Methods of X-aptamer generation and compositions thereof

Description:

 

Aptamers are structurally distinct RNA and DNA oligonucleotides (ODNs) that can mimic protein-binding molecules and exhibit high (nM) binding affinity based on their unique secondary three-dimensional structure conformations and not by pair-wise nucleic acid binding. Aptamers can be selected via high-throughput in vitro methods to bind target molecules. Aptamers are thus emerging as viable alternatives to small molecules and antibody-based therapies in the field of drug development.

 

Provided herein are methods for a novel bead-based next-generation “X-aptamer” selection scheme that extends aptamer technology to include X-modified bases, thus resulting in X-aptamers, at any position along the sequence because the aptamers are chemically synthesized via a split-pool scheme on individual beads. Also provides are application to a wide range of commonly used DNA modifications, including, but not limited to, monothioate and dithioate backbone substitutions. This new class of aptamer allows chemical modifications introduced to any of the bases in the aptamer sequence as well as the phosphate backbones and can be extended to other carbohydrate-based systems.

 

UTHealth Ref. No.: 2012-0015

Inventors: Gorenstein et al.

Patent Status: Issued U.S. Patent 9,988,623

License Available: world-wide; exclusive or non-exclusive

 

Patent Information:

The preceding is intended to be a non-confidential and limited description of a novel technology created at the University of Texas Health Science Center at Houston (UTHealth). This promotional material is not comprehensive in scope and should not replace company’s diligence in a thorough evaluation of the technology. Please contact the Office of Technology Management for more information regarding this technology.
Category(s):
Therapeutics
Diagnostics
For Information, Contact:
Christine Flynn
Associate Director, Licensing and New Venture Development
University of Texas Health Science Center At Houston
Christine.Flynn@uth.tmc.edu
Inventors:
Keywords:
© 2020. All Rights Reserved. Powered by Inteum